IMPLEMENTASI METODE K-NEAREST NEIGHBOUR DALAM MEMPREDIKSI CURAH HUJAN DI KOTA BOGOR
DOI:
https://doi.org/10.55606/jurritek.v1i1.592Keywords:
K-Nearest Neighbor, Rainfall¸ Bogor City, Machine Learning.Abstract
Accurate weather prediction information is important for various fields that are closely related to weather forecasting, such as agriculture, fisheries and many more. Because precise weather forecasts are very useful for various fields of carrying out various activities. Because of that, it is necessary to make an application to find weather or rainfall prediction information, so that the information can be utilized optimally by the community. In this journal the authors apply the k-nearest neighbors (k-NN) method based on rainfall data obtained from the Bogor climatology station from 2016-2017 and the test results show that the predicted rainfall for the Bogor area with the K-Nearest Neighbor algorithm obtained a value of 0, 93148.
Downloads
References
F. Hermawan, H. Agung, “Implementasi Metode K-Nearest Neighbor Pada Aplikasi Data Penjualan PT. Multitek Mitra Sejati”. Jurnal Sains dan Teknologi. ,Volume 4. Agustus 2017.
Hasym, I E & Susilawati, I. “Klasifikasi Jenis Ikan Cupang Menggunakan Algoritma Principal Component Analysis (PCA) Dan K-Nearest Neighbors (KNN)”. KONSTELASI: Konvergensi Teknologi dan Sistem Informasi.
Putri, Ayu Azlina. “Penerapan Data Mining Untuk Memprediksi Penjualan Buah Dan Sayur Menggunakan Metode K-Nearest Neighbor (Studi Kasus : PT. Central Brastagi Utama)”. RESOLUSI : Rekayasa Teknik Informatika dan Informasi, Vol 1, No 6, Juli 2021.
Wangge, M. “Penerapan Metode Principal Component Analysis (PCA) Terhadap Faktor-faktor yang Mempengaruhi Lamanya Penyelesaian Skripsi Mahasiswa Program Studi Pendidikan Matematika FKIP UNDANA:. Jurnal Cendekia : Jurnal Pendidikan Matematika, 5(2), 974-988, 2021. https://doi.org/10.31004/cendekia.v5i2.465