Comparative Study of Natural Polymers and Titanium as a Medical Implant in Terms of Safety

Authors

  • Filbert Nicklaus Gunawan Universitas Kristen Krida Wacana
  • Agus Limanto Universitas Kristen Krida Wacana

DOI:

https://doi.org/10.55606/jurrike.v2i1.1034

Keywords:

titanium, natural polymers, implant, biocompatibility, mechanical properties

Abstract

Titanium has been utilized as an implant material because of its mechanical properties, corrosion resistance, and biocompatibility. However, there are some issues in using titanium for medical implants such as particle release that could be toxic to the native environment. Therefore, it is necessary to find safer substitute materials such as natural polymers, which are found to be great in biocompatibility and less toxic. In this paper, we discussed the safety characteristics such as biocompatibility, biodegradability, and mechanical properties for both materials. The source of information was gathered through online databases, PubMed, using keywords such as titanium, 3D bioprinting, and implant, and further screened with biocompatibility, mechanical characteristics, gelatin, fibrin, cellulose, alginate, agarose, silk, in-vitro and in-vivo. Journal publications that did not discuss biocompatibility, biodegradability, mechanical qualities, could not be opened, and were not research articles were excluded. The 9 journals were selected based on the inclusion, title, and abstract. It can be concluded that natural polymers could be a titanium alternative based on its safety characteristics. Further studies are required to do more research about their safety to be used as medical implant material.   

 

References

Ahn, T. K., Lee, D. H., Kim, T. sup, Jang, G. chol, Choi, S. J., Oh, J. B., Ye, G., & Lee, S. (2018). Modification of Titanium Implant and Titanium Dioxide for Bone Tissue Engineering. Advances in Experimental Medicine and Biology, 1077, 355–368. https://doi.org/10.1007/978-981-13-0947-2_19

Albrektsson, T., Buser, D., Chen, S. T., Cochran, D., Debruyn, H., Jemt, T., Koka, S., Nevins, M., Sennerby, L., Simion, M., Taylor, T. D., & Wennerberg, A. (2012). Statements from the Estepona Consensus Meeting on Peri-implantitis, February 2-4, 2012. Clinical Implant Dentistry and Related Research, 14(6), 781–782. https://doi.org/10.1111/cid.12017

Amarnath, G., Muddugangadhar, B., Tripathi, S., Dikshit, S., & MS, D. (2011). Biomaterials for Dental Implants: An Overview. International Journal of Oral Implantology & Clinical Research, 2(1), 13–24. https://doi.org/10.5005/jp-journals-10012-1030

Ashammakhi, N., Ahadian, S., Xu, C., Montazerian, H., Ko, H., Nasiri, R., Barros, N., & Khademhosseini, A. (2019). Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 1. https://doi.org/10.1016/j.mtbio.2019.100008

Ashok Raj, J., Pottirayil, A., & Kailas, S. V. (2017). Dry Sliding Wear Behavior of Ti-6Al-4V Pin Against SS316L Disk at Constant Contact Pressure. Journal of Tribology, 139(2). https://doi.org/10.1115/1.4033363

Atieh, M. A., Alsabeeha, N. H. M., Faggion, C. M., & Duncan, W. J. (2012). The Frequency of Peri-Implant Diseases: A Systematic Review and Meta-Analysis. Journal of Periodontology, 1–15. https://doi.org/10.1902/jop.2012.120592

Benwood, C., Chrenek, J., Kirsch, R. L., Masri, N. Z., Richards, H., Teetzen, K., & Willerth, S. M. (2021). Natural biomaterials and their use as bioinks for printing tissues. Bioengineering, 8(2), 1–19. https://doi.org/10.3390/bioengineering8020027

Bertassoni, L. E., Cardoso, J. C., Manoharan, V., Cristino, A. L., Bhise, N. S., Araujo, W. A., Zorlutuna, P., Vrana, N. E., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademhosseini, A. (2014). Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication, 6(2). https://doi.org/10.1088/1758-5082/6/2/024105

Bociaga, D., Bartniak, M., Grabarczyk, J., & Przybyszewska, K. (2019). Sodium alginate/gelatine hydrogels for direct bioprinting-the effect of composition selection and applied solvents on the bioink properties. Materials, 12(7). https://doi.org/10.3390/ma12172669

Campos, D. F. D., Blaeser, A., Korsten, A., Neuss, S., Jäkel, J., Vogt, M., & Fischer, H. (2015). The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Engineering - Part A, 21(3–4), 740–756. https://doi.org/10.1089/ten.tea.2014.0231

Can, A. A., & Ateş, G. B. (2016). Silk as a Natural Biopolymer for Tissue Engineering. Advanced Surfaces for Stem Cell Research, 381–400. https://doi.org/10.1002/9781119242642.ch13

Cecchinato, D., Parpaiola, A., & Lindhe, J. (2013). A cross-sectional study on the prevalence of marginal bone loss among implant patients. Clinical Oral Implants Research, 24(1), 87–90. https://doi.org/10.1111/j.1600-0501.2012.02457.x

Chi, J., Zhang, X., Wang, Y., Shao, C., Shang, L., & Zhao, Y. (2021). Bio-inspired wettability patterns for biomedical applications. Materials Horizons, 8(1), 124–144. https://doi.org/10.1039/d0mh01293a

Chimene, D., Lennox, K. K., Kaunas, R. R., & Gaharwar, A. K. (2016). Advanced Bioinks for 3D Printing: A Materials Science Perspective. Annals of Biomedical Engineering, 44(6), 2090–2102. https://doi.org/10.1007/s10439-016-1638-y

Cordeiro, R., Henriques, M., Silva, J. C., Antunes, F., Alves, N., & Moura, C. (2022). Corncob Cellulose Scaffolds: A New Sustainable Temporary Implant for Cartilage Replacement. Journal of Functional Biomaterials, 13(2). https://doi.org/10.3390/jfb13020063

Daly, A. C., Critchley, S. E., Rencsok, E. M., & Kelly, D. J. (2016). A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication, 8(4). https://doi.org/10.1088/1758-5090/8/4/045002

Das, S., Pati, F., Choi, Y. J., Rijal, G., Shim, J. H., Kim, S. W., Ray, A. R., Cho, D. W., & Ghosh, S. (2015). Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomaterialia, 11(1), 233–246. https://doi.org/10.1016/j.actbio.2014.09.023

De la Puente, P., & Ludeña, D. (2014). Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Experimental Cell Research, 322(1), 1–11. https://doi.org/10.1016/j.yexcr.2013.12.017

de Melo, B. A. G., Jodat, Y. A., Cruz, E. M., Benincasa, J. C., Shin, S. R., & Porcionatto, M. A. (2020). Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomaterialia, 117, 60–76. https://doi.org/10.1016/j.actbio.2020.09.024

Derks. (n.d.). A systematic review of current epidemiology. .

Desimone, E., Schacht, K., Jungst, T., Groll, J., & Scheibel, T. (2015). Biofabrication of 3D constructs: Fabrication technologies and spider silk proteins as bioinks. Pure and Applied Chemistry, 87(8), 737–749. https://doi.org/10.1515/pac-2015-0106

Dias Corpa Tardelli, J., Bolfarini, C., & Cândido dos Reis, A. (2020). Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: A systematic review. Journal of Trace Elements in Medicine and Biology, 62. https://doi.org/10.1016/j.jtemb.2020.126618

Dissanayaka, W. L., & Zhang, C. (2020). Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration. Journal of Endodontics, 46(9), S81–S89. https://doi.org/10.1016/j.joen.2020.06.022

Duan, B., Hockaday, L. A., Kang, K. H., & Butcher, J. T. (2013). 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research - Part A, 101 A(5), 1255–1264. https://doi.org/10.1002/jbm.a.34420

Friehs, E., AlSalka, Y., Jonczyk, R., Lavrentieva, A., Jochums, A., Walter, J. G., Stahl, F., Scheper, T., & Bahnemann, D. (2016). Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 29, 1–28. https://doi.org/10.1016/j.jphotochemrev.2016.09.001

Ganesh, B. K. C., Ramanaih, N., & Chandrasekhar Rao, P. V. (2012). Dry sliding wear behavior of Ti-6Al-4V implant alloy subjected to various surface treatments. Transactions of the Indian Institute of Metals, 65(5), 425–434. https://doi.org/10.1007/s12666-012-0147-4

Gopinathan, J., & Noh, I. (2018). Recent trends in bioinks for 3D printing. Biomaterials Research, 22(1). https://doi.org/10.1186/s40824-018-0122-1

Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S., Bareille, R., Rémy, M., Bordenave, L., Amédée j, J., & Guillemot, F. (2010). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31(28), 7250–7256. https://doi.org/10.1016/j.biomaterials.2010.05.055

Gungor-Ozkerim, P. S., Inci, I., Zhang, Y. S., Khademhosseini, A., & Dokmeci, M. R. (2018). Bioinks for 3D bioprinting: An overview. Biomaterials Science, 6(5), 915–946. https://doi.org/10.1039/c7bm00765e

Guo, S., Cai, C., Zhang, Y., Xiao, Y., & Qu, X. (2012). Biomedical Ti-24Nb-4Zr-7.9Sn alloy fabricated by conventional Powder Metallurgy and Spark Plasma Sintering. Key Engineering Materials, 520, 208–213. https://doi.org/10.4028/www.scientific.net/KEM.520.208

Hagenbuchner, J., Nothdurfter, D., & Ausserlechner, M. J. (2021). 3D bioprinting: novel approaches for engineering complex human tissue equivalents and drug testing. Essays in Biochemistry, 65(3), 417. https://doi.org/10.1042/EBC20200153

He, X., Reichl, F. X., Milz, S., Michalke, B., Wu, X., Sprecher, C. M., Yang, Y., Gahlert, M., Röhling, S., Kniha, H., Hickel, R., & Högg, C. (2020). Titanium and zirconium release from titanium- and zirconia implants in mini pig maxillae and their toxicity in vitro. Dental Materials, 36(3), 402–412. https://doi.org/10.1016/j.dental.2020.01.013

Hospodiuk, M., Dey, M., Sosnoski, D., & Ozbolat, I. T. (2017). The bioink: A comprehensive review on bioprintable materials. Biotechnology Advances, 35(2), 217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006

Hussein, M. A., Mohammed, A. S., & Al-Aqeeli, N. (2015). Wear characteristics of metallic biomaterials: A review. Materials, 8(5), 2749–2768. https://doi.org/10.3390/ma8052749

Irvine, S. A., & Venkatraman, S. S. (2016). Bioprinting and differentiation of stem cells. Molecules, 21(9). https://doi.org/10.3390/molecules21091188

Isogai, A., & Bergström, L. (2018). Preparation of cellulose nanofibers using green and sustainable chemistry. Current Opinion in Green and Sustainable Chemistry, 12, 15–21. https://doi.org/10.1016/j.cogsc.2018.04.008

Janarthanan, G., Tran, H. N., Cha, E., Lee, C., Das, D., & Noh, I. (2020). 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Materials Science and Engineering C, 113. https://doi.org/10.1016/j.msec.2020.111008

Jones, N. (2012). Science in three dimensions: The print revolution. Nature, 487(7405), 22–23. https://doi.org/10.1038/487022a

Khoeini, R., Nosrati, H., Akbarzadeh, A., Eftekhari, A., Kavetskyy, T., Khalilov, R., Ahmadian, E., Nasibova, A., Datta, P., Roshangar, L., Deluca, D. C., Davaran, S., Cucchiarini, M., & Ozbolat, I. T. (2021). Natural and Synthetic Bioinks for 3D Bioprinting. Advanced NanoBiomed Research, 1(8), 2000097. https://doi.org/10.1002/anbr.202000097

Kim, K. T., Eo, M. Y., Nguyen, T. T. H., & Kim, S. M. (2019). General review of titanium toxicity. International Journal of Implant Dentistry, 5(1). https://doi.org/10.1186/s40729-019-0162-x

Klein, G. T., Lu, Y., & Wang, M. Y. (2013). 3D printing and neurosurgery--ready for prime time? World Neurosurgery, 80(3–4), 233–235. https://doi.org/10.1016/j.wneu.2013.07.009

Lee, B. H., Lum, N., Seow, L. Y., Lim, P. Q., & Tan, L. P. (2016). Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications. Materials, 9(10). https://doi.org/10.3390/ma9100797

Lee, J., Hong, J., Kim, W. J., & Kim, G. H. (2020). Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydrate Polymers, 250. https://doi.org/10.1016/j.carbpol.2020.116914

Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science (Oxford), 37(1), 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

Lee Ventola, C. (2014). Medical applications for 3D printing: Current and projected uses. P and T, 39(10), 704–711.

Li, X., Ye, S., Yuan, X., & Yu, P. (2019). Fabrication of biomedical Ti-24Nb-4Zr-8Sn alloy with high strength and low elastic modulus by powder metallurgy. Journal of Alloys and Compounds, 772, 968–977. https://doi.org/10.1016/j.jallcom.2018.08.262

Li, X., Zhou, Y., Ebel, T., Liu, L., Shen, X., & Yu, P. (2020). The influence of heat treatment processing on microstructure and mechanical properties of Ti–24Nb–4Zr–8Sn alloy by powder metallurgy. Materialia, 13. https://doi.org/10.1016/j.mtla.2020.100803

López-Marcial, G. R., Zeng, A. Y., Osuna, C., Dennis, J., García, J. M., & O’Connell, G. D. (2018). Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomaterials Science and Engineering, 4(10), 3610–3616. https://doi.org/10.1021/acsbiomaterials.8b00903

Mandell, S. P., & Gibran, N. S. (2014). Fibrin sealants: Surgical hemostat, sealant and adhesive. Expert Opinion on Biological Therapy, 14(6), 821–830. https://doi.org/10.1517/14712598.2014.897323

Mao, Y. S., Wang, L., Chen, K. M., Wang, S. Q., & Cui, X. H. (2013). Tribo-layer and its role in dry sliding wear of Ti-6Al-4V alloy. Wear, 297(1–2), 1032–1039. https://doi.org/10.1016/j.wear.2012.11.063

Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hägg, D., & Gatenholm, P. (2015). 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 16(5), 1489–1496. https://doi.org/10.1021/acs.biomac.5b00188

Mehrotra N, S. S. (2022). Periodontitis.

Messous, R., Henriques, B., Bousbaa, H., Silva, F. S., Teughels, W., & Souza, J. C. M. (2021). Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: an integrative review. Clinical Oral Investigations, 25(4), 1627–1640. https://doi.org/10.1007/s00784-021-03785-z

Mobaraki, M., Ghaffari, M., Yazdanpanah, A., Luo, Y., & Mills, D. K. (2020). Bioinks and bioprinting: A focused review. Bioprinting, 18. https://doi.org/10.1016/j.bprint.2020.e00080

Moraschini, V., Poubel, L. A. D. C., Ferreira, V. F., & Barboza, E. D. S. P. (2015). Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. International Journal of Oral and Maxillofacial Surgery, 44(3), 377–388. https://doi.org/10.1016/j.ijom.2014.10.023

Mukherjee, S., Dhara, S., & Saha, P. (2018). Laser surface remelting of Ti and its alloys for improving surface biocompatibility of orthopaedic implants. Materials Technology, 33(2), 106–118. https://doi.org/10.1080/10667857.2017.1390931

Nair, M., & Elizabeth, E. (2015). Applications of titania nanotubes in bone biology. Journal of Nanoscience and Nanotechnology, 15(2), 939–955. https://doi.org/10.1166/jnn.2015.9771

Nichol, J. W., Koshy, S. T., Bae, H., Hwang, C. M., Yamanlar, S., & Khademhosseini, A. (2010). Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31(21), 5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064

Ozbolat, I. T. (2015). Scaffold-Based or Scaffold-Free Bioprinting: Competing or Complementing Approaches? Journal of Nanotechnology in Engineering and Medicine, 6(2). https://doi.org/10.1115/1.4030414

P., R., Ž.P., K., S., A., S., R., & M., B. (2018). Bioprinting of tissue engineering scaffolds. Journal of Tissue Engineering, 9.

Panwar, A., & Tan, L. P. (2016). Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules, 21(6). https://doi.org/10.3390/molecules21060685

Philip, J. T., Mathew, J., & Kuriachen, B. (2019). Tribology of Ti6Al4V: A review. Friction, 7(6), 497–536. https://doi.org/10.1007/s40544-019-0338-7

Piao, Y., You, H., Xu, T., Bei, H. P., Piwko, I. Z., Kwan, Y. Y., & Zhao, X. (2021). Biomedical applications of gelatin methacryloyl hydrogels. Engineered Regeneration, 2, 47–56. https://doi.org/10.1016/j.engreg.2021.03.002

Pichat, P. (2010). A brief survey of the potential health risks of TiO2 particles and TiO2- Containing photocatalytic or non-photocatalytic materials. Journal of Advanced Oxidation Technologies, 13(3), 238–246. https://doi.org/10.1515/jaots-2010-0302

Roberts, I. V., Bukhary, D., Valdivieso, C. Y. L., & Tirelli, N. (2020). Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromolecular Bioscience, 20(1). https://doi.org/10.1002/mabi.201900283

Roseti, L., Cavallo, C., Desando, G., Parisi, V., Petretta, M., Bartolotti, I., & Grigolo, B. (2018). Three-dimensional bioprinting of cartilage by the use of stem cells: A strategy to improve regeneration. Materials, 11(9). https://doi.org/10.3390/ma11091749

S.V., M., A., S., & A., A. (2013). Evaluation of hydrogels for bio-printing applications. Journal of Biomedical Materials Research - Part A, 101 A(1), 272–284.

Saini, M. (2015). Implant biomaterials: A comprehensive review. World Journal of Clinical Cases, 3(1), 52. https://doi.org/10.12998/wjcc.v3.i1.52

Sawkins, M. J., Mistry, P., Brown, B. N., Shakesheff, K. M., Bonassar, L. J., & Yang, J. (2015). Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication, 7(3). https://doi.org/10.1088/1758-5090/7/3/035004

Seol, Y. J., Kang, H. W., Lee, S. J., Atala, A., & Yoo, J. J. (2014). Bioprinting technology and its applications. European Journal of Cardio-Thoracic Surgery, 46(3), 342–348. https://doi.org/10.1093/ejcts/ezu148

Shi, L., Shi, L., Wang, L., Duan, Y., Lei, W., Wang, Z., Li, J., Fan, X., Li, X., Li, S., & Guo, Z. (2013). The Improved Biological Performance of a Novel Low Elastic Modulus Implant. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0055015

Shpichka, A., Butnaru, D., Bezrukov, E. A., Sukhanov, R. B., Atala, A., Burdukovskii, V., Zhang, Y., & Timashev, P. (2019). Skin tissue regeneration for burn injury. Stem Cell Research and Therapy, 10(1). https://doi.org/10.1186/s13287-019-1203-3

Shpichka, A., Osipova, D., Efremov, Y., Bikmulina, P., Kosheleva, N., Lipina, M., Bezrukov, E. A., Sukhanov, R. B., Solovieva, A. B., Vosough, M., & Timashev, P. (2020). Fibrin-based bioinks: New tricks from an old dog. International Journal of Bioprinting, 6(3), 1–14. https://doi.org/10.18063/IJB.V6I3.269

Singh, Y. P., Bandyopadhyay, A., & Mandal, B. B. (2019). 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. ACS Applied Materials and Interfaces, 11(37), 33684–33696. https://doi.org/10.1021/acsami.9b11644

Spotnitz, W. D. (2014). Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive—a Laboratory and Clinical Perspective. ISRN Surgery, 2014, 1–28. https://doi.org/10.1155/2014/203943

Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D (1st ed.). Penerbit Alfabeta.

Vanaei, S., Parizi, M. S., Vanaei, S., Salemizadehparizi, F., & Vanaei, H. R. (2021). An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. Engineered Regeneration, 2, 1–18. https://doi.org/10.1016/j.engreg.2020.12.001

Wang, Q., Sun, J., Yao, Q., Ji, C., Liu, J., & Zhu, Q. (2018). 3D printing with cellulose materials. Cellulose, 25(8), 4275–4301. https://doi.org/10.1007/s10570-018-1888-y

Wilson, T. G., Valderrama, P., Burbano, M., Blansett, J., Levine, R., Kessler, H., & Rodrigues, D. C. (2015). Foreign Bodies Associated With Peri-Implantitis Human Biopsies. Journal of Periodontology, 86(1), 9–15. https://doi.org/10.1902/jop.2014.140363

Wu, Y., Lin, Z. Y. (William), Wenger, A. C., Tam, K. C., & Tang, X. (Shirley). (2018). 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting, 9, 1–6. https://doi.org/10.1016/j.bprint.2017.12.001

Wüst, S., Godla, M. E., Müller, R., & Hofmann, S. (2014). Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia, 10(2), 630–640. https://doi.org/10.1016/j.actbio.2013.10.016

Yue, K., Trujillo-de Santiago, G., Alvarez, M. M., Tamayol, A., Annabi, N., & Khademhosseini, A. (2015). Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73, 254–271. https://doi.org/10.1016/j.biomaterials.2015.08.045

Zarrintaj, P., Manouchehri, S., Ahmadi, Z., Saeb, M. R., Urbanska, A. M., Kaplan, D. L., & Mozafari, M. (2018). Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 187, 66–84. https://doi.org/10.1016/j.carbpol.2018.01.060

Željka, P. ., Patrick, M. R., Said, A., Sujith, R., Ralf, S., Ole, J., Zrinka, I., & Mike, B. (2018). An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials, 11, 219.

Zhan, X., Li, S., Cui, Y., Tao, A., Wang, C., Li, H., Zhang, L., Yu, H., Jiang, J., & Li, C. (2020). Comparison of the osteoblastic activity of low elastic modulus Ti-24Nb-4Zr-8Sn alloy and pure titanium modified by physical and chemical methods. Materials Science and Engineering C, 113. https://doi.org/10.1016/j.msec.2020.111018

Zhang, Yahui; Yu, Yin; Akkouch, Adil; Dababneh, Amer; Dolati, Farzaneh; Ozbolat, I. (2012). In Vitro Study of Directly Bioprinted Perfusable Vasculature Conduits. 40(6), 1301–1315.

Zhang, B., Luo, Y., Ma, L., Gao, L., Li, Y., Xue, Q., Yang, H., & Cui, Z. (2018). 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-Design and Manufacturing, 1(1), 2–13. https://doi.org/10.1007/s42242-018-0004-3

Zhang, H., Cheng, J., & Ao, Q. (2021). Preparation of alginate-based biomaterials and their applications in biomedicine. Marine Drugs, 19(5). https://doi.org/10.3390/md19050264

Zhang, K., Fu, Q., Yoo, J., Chen, X., Chandra, P., Mo, X., Song, L., Atala, A., & Zhao, W. (2017). 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomaterialia, 50, 154–164. https://doi.org/10.1016/j.actbio.2016.12.008

Zhao, Y., Yao, R., Ouyang, L., Ding, H., Zhang, T., Zhang, K., Cheng, S., & Sun, W. (2014). Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, 6(3). https://doi.org/10.1088/1758-5082/6/3/035001

Zheng, Q., Mao, L., Shi, Y., Fu, W., & Hu, Y. (2022). Biocompatibility of Ti-6Al-4V titanium alloy implants with laser microgrooved surfaces. Materials Technology, 37(12), 2039–2048. https://doi.org/10.1080/10667857.2020.1816011

Downloads

Published

2023-04-05

How to Cite

Filbert Nicklaus Gunawan, & Agus Limanto. (2023). Comparative Study of Natural Polymers and Titanium as a Medical Implant in Terms of Safety . JURNAL RISET RUMPUN ILMU KEDOKTERAN, 2(1), 103–122. https://doi.org/10.55606/jurrike.v2i1.1034