VIRUS: EVOLUSI, GENETIKA, DRIFT DAN SHIFT ANTIGEN

Authors

  • Yohanes Firmansyah Atmajaya University, Jakarta, Indonesia
  • Edwin Destra Tarumanagara University, Jakarta, Indonesia
  • Juvenius Martin Atmajaya University, Jakarta, Indonesia
  • Natasha Fiorentina Kusumawati Atmajaya University, Jakarta, Indonesia
  • Michael Michael Atmajaya University, Jakarta, Indonesia
  • Nancy Suwarna Atmajaya University, Jakarta, Indonesia

DOI:

https://doi.org/10.55606/jurrike.v1i2.600

Keywords:

Evolution; Virus; antigenic shift; antigenic drift; Genetics

Abstract

Viral evolution is a subdiscipline of evolutionary biology and virology that focuses on the evolution of viruses. Many viruses, especially RNA viruses, have relatively high mutation rates and short production durations (on the order of one point mutation or more per genome per round of replication). The rapid pace of viral mutation paired with natural selection enables viruses to rapidly adapt to changes in the host environment, despite the fact that the majority of viral mutations offer little benefit and frequently prove to be harmful. Additionally, because viruses often make several copies in an infected host, altered genes can be rapidly transmitted to a large number of offspring. The high mutation rates of RNA viruses, which are the result of an error-prone RNA-dependent RNA polymerase, make them a veritable gold mine for researchers interested in discovering evolutionary novelty and developing new methods to study evolution in action. There are two different forms of genetic changes: antigenic drift and antigenic shift. This article covers briefly the evolution of viruses in terms of genetic variation.

 

References

Batorsky, R., Sergeev, R. A., & Rouzine, I. M. (2014). The route of HIV escape from immune response targeting multiple sites is determined by the cost-benefit tradeoff of escape mutations. PLoS Computational Biology, 10(10), e1003878. https://doi.org/10.1371/journal.pcbi.1003878

Bernacki, S., Karimi, M., Hilson, P., & Robertson, N. (2010). Virus-induced gene silencing as a reverse genetics tool to study gene function. Methods in Molecular Biology (Clifton, N.J.), 655, 27–45. https://doi.org/10.1007/978-1-60761-765-5_3

Boni, M. F., Gog, J. R., Andreasen, V., & Feldman, M. W. (2006). Epidemic dynamics and antigenic evolution in a single season of influenza A. Proceedings. Biological Sciences, 273(1592), 1307–1316. https://doi.org/10.1098/rspb.2006.3466

Chuong, E. B. (2018). The placenta goes viral: Retroviruses control gene expression in pregnancy. PLoS Biology, 16(10), e3000028. https://doi.org/10.1371/journal.pbio.3000028

Decaro, N., Martella, V., Desario, C., Bellacicco, A. L., Camero, M., Manna, L., D’Aloja, D., & Buonavoglia, C. (2006). First Detection of Canine Parvovirus Type 2c in Pups with Haemorrhagic Enteritis in Spain. Journal of Veterinary Medicine Series B, 53(10), 468–472. https://doi.org/10.1111/j.1439-0450.2006.00974.x

Desselberger, U. (2017). Reverse genetics of rotavirus. Proceedings of the National Academy of Sciences of the United States of America, 114(9), 2106–2108. https://doi.org/10.1073/pnas.1700738114

Dhama, K., Patel, S. K., Sharun, K., Pathak, M., Tiwari, R., Yatoo, M. I., Malik, Y. S., Sah, R., Rabaan, A. A., Panwar, P. K., Singh, K. P., Michalak, I., Chaicumpa, W., Martinez-Pulgarin, D. F., Bonilla-Aldana, D. K., & Rodriguez-Morales, A. J. (2020). SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus. Travel Medicine and Infectious Disease, 37, 101830. https://doi.org/10.1016/j.tmaid.2020.101830

Dogrammatzis, C., Waisner, H., & Kalamvoki, M. (2020). “Non-Essential” Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses, 13(1). https://doi.org/10.3390/v13010017

Durzyńska, J., & Goździcka-Józefiak, A. (2015). Viruses and cells intertwined since the dawn of evolution. Virology Journal, 12(1), 169. https://doi.org/10.1186/s12985-015-0400-7

Fisher, S. (2010). Are RNA Viruses Vestiges of an RNA World? In Darwinism, Philosophy, and Experimental Biology (pp. 67–87). Springer Netherlands. https://doi.org/10.1007/978-90-481-9902-0_5

Forterre, P. (n.d.). The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie, 87(9–10), 793–803. https://doi.org/10.1016/j.biochi.2005.03.015

Harvey, E., & Holmes, E. C. (2022). Diversity and evolution of the animal virome. Nature Reviews Microbiology, 20(6), 321–334. https://doi.org/10.1038/s41579-021-00665-x

Kim, H., Webster, R. G., & Webby, R. J. (2018). Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunology, 31(2), 174–183. https://doi.org/10.1089/vim.2017.0141

Kumar, M., Kuroda, K., Dhangar, K., Mazumder, P., Sonne, C., Rinklebe, J., & Kitajima, M. (2020). Potential Emergence of Antiviral-Resistant Pandemic Viruses via Environmental Drug Exposure of Animal Reservoirs. Environmental Science & Technology, 54(14), 8503–8505. https://doi.org/10.1021/acs.est.0c03105

Mikonranta, L., Mappes, J., Laakso, J., & Ketola, T. (2015). Within-host evolution decreases virulence in an opportunistic bacterial pathogen. BMC Evolutionary Biology, 15, 165. https://doi.org/10.1186/s12862-015-0447-5

Nasir, A., Kim, K. M., & Caetano-Anollés, G. (2012). Viral evolution: Primordial cellular origins and late adaptation to parasitism. Mobile Genetic Elements, 2(5), 247–252. https://doi.org/10.4161/mge.22797

Oxford, J. S., & Gill, D. (2018). Unanswered questions about the 1918 influenza pandemic: origin, pathology, and the virus itself. The Lancet. Infectious Diseases, 18(11), e348–e354. https://doi.org/10.1016/S1473-3099(18)30359-1

Palese, P. (2004). Influenza: old and new threats. Nature Medicine, 10(S12), S82–S87. https://doi.org/10.1038/nm1141

Payne, S. (2017a). Family Coronaviridae. In Viruses (pp. 149–158). Elsevier. https://doi.org/10.1016/B978-0-12-803109-4.00017-9

Payne, S. (2017b). Virus Evolution and Genetics. In Viruses (pp. 81–86). Elsevier. https://doi.org/10.1016/B978-0-12-803109-4.00008-8

Pérez-Losada, M., Arenas, M., Galán, J. C., Palero, F., & González-Candelas, F. (2015). Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 30, 296–307. https://doi.org/10.1016/j.meegid.2014.12.022

Rampersad, S., & Tennant, P. (2018). Replication and Expression Strategies of Viruses. In Viruses (pp. 55–82). Elsevier. https://doi.org/10.1016/B978-0-12-811257-1.00003-6

Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral mutation rates. Journal of Virology, 84(19), 9733–9748. https://doi.org/10.1128/JVI.00694-10

Sharp, P. M., & Hahn, B. H. (2011). Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspectives in Medicine, 1(1), a006841. https://doi.org/10.1101/cshperspect.a006841

Taubenberger, J. K. (2005). The virulence of the 1918 pandemic influenza virus: unraveling the enigma. Archives of Virology. Supplementum, 437(19), 101–115. https://doi.org/10.1007/3-211-29981-5_9

Tulchinsky, T. H. (2018). Maurice Hilleman: Creator of Vaccines That Changed the World. In Case Studies in Public Health (pp. 443–470). Elsevier. https://doi.org/10.1016/B978-0-12-804571-8.00003-2

Wu, C., Walsh, A. S., & Rosenfeld, R. (2011). Genotype phenotype mapping in RNA viruses - disjunctive normal form learning. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 62–73. https://doi.org/10.1142/9789814335058_0007

Yewdell, J. W. (2021). Antigenic drift: Understanding COVID-19. Immunity, 54(12), 2681–2687. https://doi.org/10.1016/j.immuni.2021.11.016

Downloads

Published

2022-12-10

How to Cite

Yohanes Firmansyah, Edwin Destra, Juvenius Martin, Natasha Fiorentina Kusumawati, Michael, M., & Nancy Suwarna. (2022). VIRUS: EVOLUSI, GENETIKA, DRIFT DAN SHIFT ANTIGEN. JURNAL RISET RUMPUN ILMU KEDOKTERAN, 1(2), 94–105. https://doi.org/10.55606/jurrike.v1i2.600